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The equations of motion of a heavy gyroscope on gimbals are integrated for an arbitrary 

position of the center of mass of the gyro housing. 
In 1958 Chetaev [l] investigated the motion of a heavy gyro on gimbals in the case 

of vertical position of the outer gimbal axis of rotation (output axis). The center of 
gravity of the housing and gyro was assumed to coincide with the axis of symmetry of 

the gyro. Chetaev reduced the problem of integrating the equations of motion to quad- 
ratures. These quadratures can be readily extended to the case where the gyroscope is 
acted along the axis of rotation of its housing by a moment of external forces which is 

an arbitrary integrable function of the angle of nutation. 
This problem was considered in p] under certain assumptions concerning the moments 

of inertia of the system elements and for certain specific initial data. 

1. Let us consider a gyro on gimbals under the assumption that the fixed axis of rota- 
tion of the outer gimbal is in vertical position. We introduce two right-handed coordi- 

nate systems with a common origin at a fixed point 0 of the gyroscope. The axis 5, of 
the fixed coordinate system <i, &, E3 is directed vertically upward along the axis of 

rotation of the outer gimbal; the axes <i and 5% lie in the horizontal plane. The axes 
nr and 71~ of the moving coordinate system thq2n3 (which is rigidly attached to the gyro- 
scope housing) are directed along the axis of rotation of the housing and along the axis 
of symmetry of the gyro, respectively. The position of the system under consideration 
in the space &&E3 is defined by the three Euler angles, namely the angle of precession 
$, the angle of nutation 6 , and the angle of proper rotation q of the gyro relative to the 
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coordinate system QQQ. Let QQQ be the principal axes of inertia of both the gyro and 

its housing; let A, = A,, A, be the principal moments of inertia of the gyro, and let 
I?,, B,, B, be the principal moments of inertia of the housing; we denote the moment 
of inertia of the outer gimbal relative to the axis 60 by C,. 

The kinetic energy of the system is given by the expression 

2T = v2 (A, - C, cos20) + eo2B, + A 3 (cp’ + $‘cos e)2 

do = C, + B, + A,, B, = A, + B,, C, = B, + A, -B, 

The dot superscripts denote derivatives with respect to time. From now on we assume 

that C, = 0 [3]. The coordinates of the center of gravity of the housing will be denoted 

by %0~00%0, and the weight by pl. The corresponding gyro parameters have the values 
O, 0, I, P. The force function is 

U = -P,qzosin 8 - (P1qzo + P1) cos 0 

Let us assume that the system under consideration is acted on by weights only. Then 
the equation of motion of the system written in the Lagrange form of the second kind, 

[A,~+A,cose(cp’+~,‘cose)l’ =o 

B,e” + A3q sin 8 (cp. + q* cos e) = -_p,qzo cos 8 + G sin e 

A, (cp'+ $'COS e)' = 0, G = P~Q,, + PI 

has the first integrals 
A,(cp’+$.cos8)= H 

(1.1) 

~0~~+A3((P~+~COSe)c0se =L 

A,+‘” + B0e.2 + 2P,nz0 sin e + 2G cos e = M 

(1.2) 

Here Ii, L and M are integration constants. 

2. System (1.2) yields the following system of differential equations for the Euler 

angles *, e 'p : 9,’ =$,,‘+ (cos0, -cosO) HIAo (2.1) 

~/A#&’ = [60’2AoBo + 2AoP,qao (sin 8, - sin O) + 

+ 2-40(G- H+;) (~0~8, - ~0~8) - ~2 (COST, - ~0~e)q"z (2.2) 

cp~=H~~,-~0~8~(~0~e,-~0~e)~~~,+g,*~ (2.3) 

The plus sign in the right side of (2.2) follows from the assumption that 8 (t) does not 
decreases for t = to; our choice is dictated solely by the wish to be specific, and this 
restriction will be lifted below. 

Let us change variables in Eq. (2.2) by setting 

%-I = tgy2(e - e,) 
As a result we obtain 

-2~A,B0x’ = (box4 + 4blx3 + 6b,x2 + 46,x + bo)“’ 
b, = AoBo6,‘2, b, = A,, (G - Hg,‘) sin O. - AOP1q20 cos e. 

3b, = A&oeo'2 + 2A. (G - Hq,‘) cos e. + 2AoPlqzo sin 8, - 2H2 sin2 8, 
b, = A, (G - HI+,‘) sin B,, - AoP,qro cos 8, - Hz sin 28, 

b4 = AoBo0,‘2 + 4A. (G - H$,*) cos O. + 4AoPlqzo sin O. - 4Ha COS* 80 

Setting X = y - b, / b,, we obtain 
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- 2 r/&B,,/ boy’= f/y4 + thy” + 4C8Y + c4 

bob2 - b12 
cz = 

bsb$ - 3bobibz + 26x3 bdb# - 4bozblbs + 6bob12bz - 3b? 
bo2 * c3 = 

ho3 
t CA = bog 

Let us introduce the new variable 2 by means of the formula [4] 

Squaring. 
4c& i_ 4c,y + c.$ +- 4y% f 4c,z - 422 - c22 = 

and differentiating, we obtain 

(2.4) 

Let us solve (2.4) for y , 

y‘- - 
c3 & 1/k;" - g2'z - g3' gz' = c4 -5 :ks22 

Z(z + c2) 9 
g3' = c2q - c32- c23 

Let us construct the Weierstrass elliptic function ‘B (w) with the invariants g,’ and g3‘ 
and set z = P (w). Rewriting (2.5) in the form 

(2zy + 2c,y i_ c3)2 = 423 - g2’z - g,’ 

and recalling the following consequence of the definition of 0 (w) : 

P’(o) = - JGy33(0) - gz’P(o)- gs’ 
we conclude that 

- T/.va + ticziifI: 4c3y -+ ('4 

dy dz 

= J/3+ c2-- 2i = - 2rzy 7 3yv; + c2 
= du: 

Hence, .-...- 
1~: = V2 v 0, / il,B, (t - to) 

Converting back to the original variables and applying the homogeneity formula to 
the functions kJ (ID) and 0’ (1~‘) we obtain 

2 [b& (z) + bob2 - h2] 

El =" +' A" tg+ 'i/-&&P'(z)- Zb&+)- b,jbo +b& 

The functions P (z) and p’(r) must be computed for the invariants 

g, = b,b, - 4b,b, + 3b22, 7 = (t -- to) / ZI/A,B, 
g, = b,b,b, - b12b, - b,= - bobsa + 2b,b,b, 

The plus or minus sign in the denominator of (2.6) must be chosen according to 

whether 0 (I) decreases or increases for t = to. The above analysis becomes methodo- 
logically invalid for b,, = 0, but in this case the expression for the function 0 (t) can be 
obtained from (2.6) by-taking the limit as b, -+ 0 by virtue of its continuity with respect 
to this parameter. The resulting function AI 

~1 = &, + 2 Arc tg (2.71 

is the solution of (2.2). The variables 11, and a, can therefore be found by quadratures 
in the form of explicit functions of the time t. 

8, Let us consider some properties of the above solution. In the event that 

00’ = 0, (G - H*,‘) sin e. = Plqzo cos e. 

we have the stationary solutions 
0 E e, es z 0, 9’ 5s qo’, cp’ E ‘PO 

(3.4) 

(3.2) 
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The Routh-altered force function 

U1@)= - P~ZO sin 0 - G cos 9 - (L -. H cos e)z pAo 

has a maximum at the equilibrium position, provided that 

ul” (eo) = ~~~~~ sin O. + (G - HqO’) cos 90 -Hz sinPBOIAo < 0 (3.3) 

Since the first integrals are continuous [S], it follows that the sufficient condition of 

unconditional stability is the stability of the stationary solutions with respect to variables 

(3.2). 
In the case 

Ul” PO) > 0 

the force function has a minimum in the equilibrium position, and this is determined by 
the lowest-order terms in the expansion of this function, which (by virtue of Liapunov’s 
theorem v]) is the sufficient condition of instability of the stationary solutions with 
respect to the variables 9 and 9’. 

In the case 
A = Pr2nzoa + (G - H$o’)2 # 0 

we can make use of (3.1) and rewrite (3.3) as 

Urn (9,) =f VE - HaP&$/A r, A 

Here the plus or minus sign is chosen in accordance with the signs of the quantities 

Pr’ho, G - IIQ,' and according to the position of 9” in the axis 8. 
At the equilibrium positions O. & n next to 9, the sign changes from the original 

sign; this means that every equilibrium position is stable for 

A o I ASh 1 < H2P,2~ro2 

while for the opposite inequality the stable equilibrium positions are separated by un- 
stable ones along the e-axis; this coincides with the familiar p, 8-J conditions of stabi- 

lity of rotation of a gyro about the vertical. 

If Ui” (9,) = 0 and if the first nonzero derivative is of eveu order, then ,Ur has an 

extremum at the equilibrium position, and the question of stability is resolved by the 
two theorems cited above. 

When Uln (Cl,) = 0 and when the first nonzero derivative is of uneven order the force 

function Urdoes not have an extremum at the equilibrium position, and stationary solu- 
tion (3.2) is unstable with respect to the variables 0 and 9’; this follows from Chetaev’s 

theorem p] on the instability of equilibrium in the case where the force function is 
analytic and does not have an extremum at the equilibrium position. 

However, for systems with one degree of freedom.equilibrium is also unstable for less 
rigid restrictions on the force function than those imposed in [9]. 

4, Let us consider a mechanical system with one degree of freedom whose equation 
of motion can be written as dUl(9) 9.. _ 

di) 
(4.1) 

We assume that the equilibrium positions are known and that they lie at finite distances 

from the equilibrium position (0, 0) under investigation. We also assume that the force 
function U, (0) f 0 is continuously differentiable and that it does not have an extremum 
at the equilibrium position; moreover, U, (0) = 0. 

Let us construct in the plane ee’ a circle of finite radius (not larger than the distance 
of the nearest equilibrium position) with its center at the origin. Let us consider the 
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which is positive inside the sector of the circle 

0’ > 0, u, (0) > 0 ((1.1) 

and vanishes at the rays bounding this sector, By virtue of the absence of an extremum 

at zero and the conditions U, (0) z 0, U, (H) f 0 the function U, (6) necessarily assumes 

positive values near the equilibrium position. The function VI (8) cannot vanish inside 
sector (4.Q since in this case (by virtue of Rolle’s theorem) we would have dl/,(U)/&=O 
inside the sector, which cannot happen by virtue of our choice of the radius of the circle. 

Hence, sector (4.2) always exists and is the domain V > 0. The derivative 

constructed by virtue of the equations of perturbed motion (4.1) is positive in the domain 
i‘> 0, since U, (9) > 0 in this domain, and the derivative dsr (0) / CEO, being a continu- 
ous function positive in the neighborhood of zero, perserves its sign all the way to the 

nearest equilibrium position, where it vanishes. Thus, the function V satisfies the condi- 

tions of Chetaev’s theorem on instability 191. 

6, We note that the authors of !$I obtained results which do not agree with those 
above in their common domain of definition. Thus, taking the initial data in the form 

0” = l’:!,z_ 0,’ = 0, G - B&,(’ Z 0 

and following the recommendation of Sect, 5 in l&Z], we obtain 

On the other hand, our expressions at the same initial data and under the condition 

prep]?” T:: 11 (which ensures the coincidence of the models) yield 

0 = r/$X, ?b’ G IjIO’ 

This is apparently due to the fact that the authors of p] (Sect. 5) assume that the 

function u = sn Is: - K (uJ] 

is the solution of the equation 
/jri / d7 z f(u --. r/J fUz -- u) (1 - d) 

for tir -L- U? = 0 and the initial condition u (0) = zzr. However, the true solution is 

(I = ur sn [-c -+ K (+)j 

6, Let us extend our consideration of the properties of the function 9 (t), setting 
b, = 0, b, # 0. As it varies along the real axis the function@ (7) assumes all values from 
+ n to e , the latter being the largest root of the polynomial 

F (z) = 4.23 - g*z - g, (6.1) 

The properties of the function 0 (t) in the case in question depend on the ratio of 
‘lzb, to e and on the multiplicity of the latter. It is conveneient to break down analysis 
of the situation into three cases, since 

8’ (x/zb,) = b,?b4 

1’. Let bp < 0. Then 
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2”. Let b, = 0. Then 

z1 = ‘I&,, 22,~ = '/a (-b, f v9bsa - 16b,b,) 
are the roots of (6.1). 

a) If b, > 0, then 
e = 22 for b,b, < 0 

e = zr for b,b, > 0 

b) If b, < 0, then 

e = z2 for A = 9b,z - 16b,b, > 0 

e = z1 for A < 0 

3O. Let b4 > 0. Then 

e < ‘jzb, for gz3 - 27gs2 < 0 or ‘lsg,?1/Bga = g3 

In the case gz3 - 27g,2 > 0 the function F (z) has three real roots, and the sufficient 

conditions for ‘Jzb, being the upper boundaryof the real roots of F (z) become the neces- . 
sary conditions and assume the form b, > 0, b,b, > 0, b, > 0. 

In all cases e = 1/l/12& is the largest multiple root of F(z) for 1/3g, 1/1/3ga= - gs. 
We have therefore obtained an algorithm which enables us to determine the ratio of 

‘id, to e and the multiplicity of the latter. Analysis of (2.7) enables us to formulate 
the following properties of 6(t): 

a) 60 < 6 \i 61, er = 8, + 2 Arctg [26, / (2e - b,)] 
b) If e > %bz, then 1 O1 - Cl0 I < n 
c) If e = llzb,, then 18, - 8, ( = n 
d) If e < 1/2b2, then ?C < / e1 - B. I< 2~ 
e) If e is a multiple root of F (z), then 6 (t) reaches the value 6, after infinite 

time. 
The assumption b, = 0 by virtue of which the properties of 6 (t), were considered 

means that I30 is a root of the right side of (2.2). 

If 0, is not a root (b, # 0), but if simple roots do exist, then, having found one of these 

roots eel and taking it to be the initial value of 6 (t) for the previous H, L and M, we 

obtain a solution equivalent in its properties to that considered above (b, = 0). 

If b, =,k 0 and if the right side of (2.2) has no roots, then 6 (t) is a monotonic func- 
tion which increases by 2n in the period p (r). On the other hand, if b, J: 0 and if the 

right side of (2.2) has multiple roots only, then consideration of the properties of the 

solution to the case b, = 0 by the above method is impossible, since in this case inves- 

tigation of the initial solution must be replaced by investigation of the stationary solu- 

tion. In this case tl (1) approaches a multiple root asymptotically. 
Summarizing the above. we can say that solutions which are stationary, monotonic, 

asymptotic, and periodic with respect to the nutation angle 6 are possible. 

Following the idea of the authors of [lo], who were the first to obtain an exact formula 
for the drift of a balanced gyroscope (an exact formula for the drift of a balanced gyro- 
scope was later proposed in [ll], the average drift rate in the last case reducible to 
6, = 0 is given by 01 01 

(I$‘) = 1 
[ 1 Ao 

L- Hcos0 deT 

ljo I/m 11s cjo vd% 1 
-1 

Here f (6) is the radicand ori the right side of (2.2), and &, and 6, are the roots. 
If the conditions 
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A,(G--H~,‘)-HH2~os0,=A,G--~H=0 

are fulfilled, we have 

f (6) = 2.4 OPl~zo (sin 0, - sin 6) + Ha (cosaeo - cosa 6) 

(6.2) 

which is an even function if either of the points f %n is taken as the new origin on the 

axis 9 , since f (0) depends solely on sin 9. Once a new origin has been chosen, cos 8 
becomes an odd function. which implies that 

0 

s 
” cosede =O 

cl0 ?f 

since it is an integral of an odd function over an interval having the origin as its mid- 

point. The average drift rate when (6.2) is fulfilled becomes particularly simple, 

<q> =-&Jo + y;zoo 

The fact of zero drift of a balanced gyroscope for L = 0 was pointed out in [11] and 
later rediscovered by the authors of [2] in the case of a balanced gyro with restrictions 

imposed on the moments of inertia (C, = 0). We note that in the latter case fulfillment 
of the condition G = L = 0 ensures that (11”) = 0 regardless of whether PlqzO is equal 

to zero. 
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